2013 Vol. 15, No. 15 3986–3989

Rhodium-Catalyzed Oxidative Cyclization of Arylphosphonic Acid Monoethyl Esters with Alkenes: Efficient Synthesis of Benzoxaphosphole 1-Oxides

Taekyu Ryu, Jaeeun Kim, Youngchul Park, Sanghyuck Kim, and Phil Ho Lee*

Department of Chemistry, Kangwon National University, Chuncheon 200-701, Republic of Korea

phlee@kangwon.ac.kr

Received June 23, 2013

ABSTRACT

Rhodium-catalyzed tandem oxidative alkenylation and an intramolecular oxy-Michael reaction were developed using arylphosphonic acid monoethyl esters and alkenes under aerobic conditions, which produced benzoxaphosphole 1-oxides in good to excellent yields.

C-H bond functionalizations catalyzed by transition metals have been demonstrated to be a very streamlined method for the formation of C-C and C-heteroatom bonds. In particular, *ortho* C-H bond functionalizations can be accomplished by the employment of a variety of directing groups with the aid of coordination of transition

metals. In a number of directing groups for C–H bond functionalizations,² nitrogen-containing compounds,^{3–5} carboxyl and hydroxyl ones^{6,7} have been broadly investigated.

Recently, our attention in the C-H bond functionalizations catalyzed by transition metals has been concentrated

^{(1) (}a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (c) Daugulis, O. Top. Curr. Chem. 2010, 292, 57. (d) Bouffard, J.; Itami, K. Top. Curr. Chem. 2010, 292, 231. (e) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293. (f) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (g) Kozhushkov, S. I.; Ackermann, L. Chem. Sci. 2013, 4, 886. (h) Satoh, T.; Miura, M. Chem.—Eur. J. 2010, 16, 11212

^{(2) (}a) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254. (b) Willis, M. C. Chem. Rev. 2010, 110, 725. (c) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (d) McMurray, L.; Hara, F. O.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885. (e) Song, G.; Wang, F.; Li, X. W. Chem. Soc. Rev. 2012, 41, 3651. (f) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588.

⁽³⁾ For the use of pyridine derivatives: (a) Itami, K.; Mitsudo, K.; Kamei, T.; Koike, T.; Nokami, T.; Yoshida, J.-i. J. Am. Chem. Soc. 2000, 122, 12013. (b) Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Org. Lett. 2006, 8, 2523. (c) Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047. (d) Chernyak, N.; Dudnik, A. S.; Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 8270. (e) Li, Y.; Li, B.-J.; Wang, W.-H.; Huang, W.-P.; Zhang, X.-S.; Chen, K.; Shi, Z.-J. Angew. Chem., Int. Ed. 2011, 50, 2115. Oxazoline derivatives: (f) Giri, R.; Chen, X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2005, 44, 2112. (g) Chen, X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 78. (h) Giri, R.; Wasa, M.; Breazzano, S. P.; Yu, J.-Q. Org. Lett. 2006, 8, 5685. (i) Li, B.; Devaraj, K.; Darcel, C.; Dixneuf, P. H. Green Chem. 2012, 14, 2706.

⁽⁴⁾ For the use of carboxylic amides, see: (a) Zaitsev, V.; Dauglulis, O. J. Am. Chem. Soc. 2005, 127, 4156. (b) Shi, Z.; Li, B.; Wan, X.; Cheng, J.; Fang, Z.; Cao, B.; Qin, C.; Wang, Y. Angew. Chem., Int. Ed. 2007, 46, 5554. (c) Li, B.-J.; Tian, S.-L.; Fang, Z.; Shi, Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1115. (d) Wang, D.-H.; Wasa, M.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 7190. (e) Wasa, M.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058. (f) Tobisu, M.; Ano, Y.; Chatani, N. Org. Lett. 2009, 11, 3250. (g) Nishikata, T.; Lipshutz, B. H. Org. Lett. 2010, 12, 1972. (h) Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908. (i) Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350.

⁽⁵⁾ For the use of oximes, see: (a) Desai, L. V.; Malik, H. A.; Sanford, M. S. *Org. Lett.* **2006**, *8*, 1141. (b) Thirunavukkarasu, V. S.; Parthasarathy, K.; Cheng, C.-H. *Angew. Chem., Int. Ed.* **2008**, *47*, 9462. (c) Sun, C.-L.; Liu, N.; Li, B.-J.; Yu, D.-G.; Wang, Y.; Shi, Z.-J. *Org. Lett.* **2010**, *12*, 184. (d) Neufeldt, S. R.; Sanford, M. S. *Org. Lett.* **2010**, *12*, 532.

⁽⁶⁾ For the use of carboxyl groups, see: (a) Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leewen, P. W. N. M. J. Am. Chem. Soc. 2002, 124, 1586. (b) Mei, T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 5215. (c) Wang, D.-H.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 17676. (d) Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010, 327, 315. (e) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460. (f) Xiao, B.; Xu, J.; Gong, T.-J.; Dai, J.-J.; Yi, J.; Liu, L. J. Am. Chem. Soc. 2010, 132, 468. (g) Engle, K. M.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 1137. (h) Park, S. H.; Kim, J. Y.; Chang, S. Org. Lett. 2011, 13, 2372.

on phosphoryl-related directing groups. ⁸ Although the phosphonic acid and its derivatives have been used as essential compounds in the field of organic, bioorganic, and medicinal chemistry, ⁹ their application in C–H bond functionalizations catalyzed by transition metals has been scarcely investigated. ^{10,11} Furthermore, the structural variation of phosphonic acid derivatives would be more flexible than that of carboxylic acid derivatives by introduction of different groups to the pentavalent phosphorus atom. In this regard, we have been interested in developing an efficient synthetic method for a wide range of organophosphorus compounds with the purpose of making focused chemical libraries effective for chemical biology study and drug discovery. ^{8,12}

Previously, Miura reported that benzoic acid reacted with acrylate, acrylamide, and acrylonitrile in the presence of rhodium catalyst to afford 7-vinylphthalide along with its dehydrogenated derivative. Also, Ackermann have disclosed ruthenium-catalyzed oxidative C—H bond alkenylations. Herein, we report for the first time rhodium-catalyzed tandem oxidative alkenylation and intramolecular *oxy*-Michael reaction using arylphosphonic acid monoethyl esters and alkenes under aerobic conditions, thus producing benzoxaphosphole 1-oxides which have been barely studied (Scheme 1). Furthermore, tandem dialkenylation and *oxy*-Michael reaction are described.

Scheme 1. Rhodium-Catalyzed Oxidative Cyclization Using Arylphosphonic Acid Monoethyl Esters

We began by screening the reaction between orthotolylphosphonic acid monoethyl ester 1a and methyl acrylate 2a in the presence of [Cp*RhCl₂]₂ as a catalyst and AgOAc as an oxidant with a variety of bases and solvents (Table 1). Reactions with a base gave a mixture of the cyclized product 3a and alkenylated product 4a (entries 1-8). Following alkenylation of phosphonic acid, alkenylated product 4a undergoes oxy-Michael reaction to give the corresponding **3a** product. Among the intensive bases tested, Na₂HPO₄ was found to enhance the selectivity of the product ratio (entry 4). However, the tandem reaction was not completed still and thus, intermediate 4a was produced in 28% yield. Accordingly, a number of solvents such as t-AmOH, 1,4-dioxane, DMF, xylene, toluene, and CH₃CN were examined in the presence of Na₂HPO₄. Although xylene and toluene provided 3a in good yields, 4a did not entirely disappear during the tandem reaction (entries 12 and 13). Further screening of the solvent revealed that the use of CH₃CN as a solvent improved the yield of 3a to 89% (85% isolated yield, dr = 1:1.1) (entry 14). Notably, ortho-alkenylated product 4a was not detected. When Na₂HPO₄ was not used (entry 15), 19% of 3a was only observed because deprotonation of the phosphonic acid monoethyl ester to give the corresponding salt which triggers C-H activation in a similar manner to that of benzoic acid substrates did not occur effectively. 16

Reactions of 1a with various electron-deficient alkenes 2 were carried out under the optimized conditions to determine the scope and limitations of the present method (Scheme 2). The scope of the tandem *ortho*-alkenylation and oxy-Michael reaction is broad, and various electrondeficient alkenes could be successfully employed. n-Butyl acrylate reacted with 1a to furnish 3b in 87% yield. Methyl vinyl ketone and ethyl vinyl ketone worked well too (3c and 3d). When 1a was subjected to acrylonitrile, the cyclized product 3e was isolated in 90% yield. We were pleased to obtain benzoxaphosphole 1-oxide 3f(71%) from 1a and N, N-dimethyl acrylamide. Vinyl phosphate and vinyl sulfone (3 equiv) reacted with 1a to afford 3g and 3h in 61% and 71% yields, respectively. However, styrene, 4-phenyl-1butene, cyclohexene, vinyltriethoxysilane, and vinyltrimethylsilane failed to give benzoxaphosphole 1-oxide.

With these results in hand, diverse arylphosphonic acid monoethyl esters were examined under the standard conditions using methyl acrylate (Scheme 3). A substrate

Org. Lett., Vol. 15, No. 15, 2013

⁽⁷⁾ For the use of hydroxyl groups, see: (a) Lu, Y.; Wang, D.-H.; Engle, K. M.; Yu, J.-Q. *J. Am. Chem. Soc.* **2010**, *132*, 5916. (b) Wang, X.; Lu, Y.; Dai, H.-X.; Yu, J.-Q. *J. Am. Chem. Soc.* **2010**, *132*, 12203. (c) Lu, Y.; Leow, D.; Wang, X.; Engle, K. M.; Yu, J.-Q. *Chem. Sci.* **2011**, *2*, 967.

^{(8) (}a) Chary, B. C.; Kim, S.; Park, Y.; Kim, J.; Lee, P. H. *Org. Lett.* **2013**, *15*, 2692. (b) Chan, L. Y.; Kim, S.; Ryu, T.; Lee, P. H. *Chem. Commun.* **2013**, *49*, 4682. (c) Seo, J.; Park, Y.; Jeon, I.; Ryu, T.; Park, S.; Lee, P. H. *Org. Lett.* **2013**, *15*, 3358. (d) Park, S.; Seo, B.; Shin, S.; So, J.-Y.; Lee, P. H. *Chem. Commun.* DOI: 10.1039/C3CC44995E.

^{(9) (}a) McCarthy, M.; Guiry, P. J. *Tetrahedron* **2001**, *57*, 3809. (b) Tang, W.; Zhang, X. *Chem. Rev.* **2003**, *103*, 3029. (c) Surry, D. S.; Buchwald, S. L. *Chem. Sci.* **2011**, *2*, 27. (d) Demmer, C. S.; Krogsgaard-Larsen, N.; Bunch, L. *Chem. Rev.* **2011**, *111*, 7981. (e) Queffélec, C.; Petit, M.; Janvier, P.; Knight, D. A.; Bujoli, B. *Chem. Rev.* **2012**, *112*, 3777

^{(10) (}a) Meng, X.; Kim, S. *Org. Lett.* **2013**, *15*, 1910. (b) Chan, L. Y.; Cheong, L.; Kim, S. *Org. Lett.* **2013**, *15*, 2186. (c) Jeon, W. H.; Lee, T. S.; Kim, E. J.; Moon, B.; Kang, J. *Tetrahedron* **2013**, *69*, 5152. (d) Unoh, Y.; Hashimoto, Y.; Takeda, D.; Hirano, K.; Satoh, T.; Miura, M. *Org. Lett.* **2013**, *15*, 3258.

⁽¹¹⁾ For the use of phosphinites and phosphites as directing groups, see: (a) Lewis, L. N.; Smith, J. F. *J. Am. Chem. Soc.* **1986**, *108*, 2728. (b) Bedford, R. B.; Coles, S. J.; Hursthouse, M. B.; Limmert, M. E. *Angew. Chem., Int. Ed.* **2003**, *42*, 112. (c) Oi, S.; Watanabe, S.-i.; Fukita, S.; Inoue, Y. *Tetrahedron Lett.* **2003**, *44*, 8665. (d) Lewis, J. C.; Wu, J.; Bergman, R. G.; Ellman, J. A. *Organometallics* **2005**, *24*, 5737.

^{(12) (}a) Lee, P. H.; Kim, S.; Park, A.; Chary, B. C.; Kim, S. *Angew. Chem., Int. Ed.* **2010**, *49*, 6806. (b) Chary, B. C.; Low, W. S.; Kim, S.; Kim, H.; Lee, P. H. *Chem.—Asian J.* **2011**, *6*, 1970. (c) Mo, J. T.; Kang, D.; Eom, D.; Kim, S. H.; Lee, P. H. *Org. Lett.* **2013**, *15*, 26.

^{(13) (}a) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. **2007**, 9, 1407. (b) Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. **2007**, 72, 5362. (c) Miura, M.; Tusda, T.; Satoh, T.; Pivsa-Art, S.; Nomura, M. J. Org. Chem. **1998**, 63, 5211.

⁽¹⁴⁾ Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153.

^{(15) (}a) Granoth, I.; Martin, J. C. J. Am. Chem. Soc. 1978, 100, 5229. (b) Collard, J.-N.; Benezra, C. Tetrahedron Lett. 1982, 23, 3725. (c) Miles, J. A.; Grabiak, R. C.; Cummins, C. J. Org. Chem. 1982, 47, 1677. (d) Macomber, R. S.; Krudy, G. A.; Seff, K.; Rendon-Diaz-Miron, L. E. J. Org. Chem. 1983, 48, 1425. (e) Hah, J. H.; Lee, B. S.; Lee, S. Y.; Lee, H.-Y. Tetrahedron Lett. 2003, 44, 5811. (f) Ma, S.; Yu, F.; Zhao, J. Synlett 2007, 583. (g) Arsanious, M. H. N.; El-Din, N. K.; Boulos, L. S. Phosphorus, Sulfur, and Silicon 2009, 184, 2813.

⁽¹⁶⁾ Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. *J. Am. Chem. Soc.* **2007**, *129*, 3510.

Table 1. Reaction Optimization^a

entry	base	solvent	yield $(\%)^{b,c}$
1	LiOAc	t-BuOH	42 (57)
2	${ m Li_2CO_3}$	$t ext{-BuOH}$	47 (50)
3	$NaHCO_3$	$t ext{-BuOH}$	16(77)
4	Na_2HPO_4	$t ext{-BuOH}$	63 (28)
5	$\mathrm{KH_{2}PO_{4}}$	$t ext{-BuOH}$	31 (69)
6	K_2HPO_4	$t ext{-BuOH}$	55 (45)
7	K_2CO_3	$t ext{-BuOH}$	26(58)
8	CsF	$t ext{-BuOH}$	25(49)
9	$\mathrm{Na_{2}HPO_{4}}$	$t ext{-AmOH}$	35 (57)
10	Na_2HPO_4	1,4-dioxane	39 (53)
11	Na_2HPO_4	DMF	55(17)
12	Na_2HPO_4	xylene	65(12)
13	Na_2HPO_4	toluene	66(13)
14	Na_2HPO_4	$\mathrm{CH_{3}CN}$	89 (1<, 1:1.1 ^d)
15	none	$\mathrm{CH_{3}CN}$	$19(23, 56^e)$

^a Reaction conditions: **1a** (0.2 mmol), **2a** (2 equiv), [Cp*RhCl₂]₂ (4 mol %), AgOAc (2 equiv) in solvent (2 mL) at 110 °C for 16 h. ^b ¹H NMR yields of **3a** using CH₂Br₂ as an internal standard. ^c Numbers in parentheses are ¹H NMR yield of **4a**. ^d Diastereomeric ratio. ^e Yield of **1a**.

having a 2-ethyl and 2-methoxy group on the phenyl ring promoted alkenylation followed by oxy-Michael reaction, thus producing the benzoxaphosphole 1-oxides 3i and 3i in 89% and 85% yields, respectively. Reaction with 2-phenylated phosphonic acid monoethyl ester 1k also produced the cyclized product 3k in quantitative yield (98%). Substrate 11 possessing an electron-withdrawing chloro group was all smoothly cyclized to provide 31 in 80% yield. The tolerance of the chloro group is particularly important, as the following catalytic cross-couplings are hopeful. When substrate 1m bearing a 2,3-dimethyl group was subjected to the standard conditions, the desired tandem product 3m was isolated in 90% yield. However, 2,5dimethyl substituted substrate 1n was less reactive due to the steric effect and the cyclized product 3n was isolated in 35% yield along with the starting material (65%). Arylphosphonic acid monoethyl ester 10 having both a 2-methyl and 4-methoxy group was cyclized to 30 in 86% yield. Substrate 1p bearing a 1-naphthalenyl group worked well too, resulting in the formation of 3p in 82% yield.

Next, when phenylphosphonic acid monoethyl ester was treated with methyl acrylate under the standard conditions, 7-alkenylated benzoxaphosphole 1-oxide **5a** was obtained selectively in 76% yield through tandem dialkenylation and an *oxy*-Michael reaction (Scheme 4). Surprisingly, 7-alkenylated benzoxaphosphole 1-oxide having an *exo*-methylene group at the 3-position was not contaminated. ¹³ Subjecting substrates having a methyl and methoxy group at the *para*-position to **2a** furnished **5b** and **5c** in 75% and 77% yields, respectively. Functional groups

Scheme 2. Rh-Catalyzed Oxidative Cyclization of 1a^a

^a Reaction conditions: **1a** (0.2 mmol), **2** (2 equiv), [Cp*RhCl₂]₂ (4 mol %), AgOAc (2 equiv), Na₂HPO₄ (1 equiv), and CH₃CN (2 mL) at 110 °C for 16 h. Isolated yields. Numbers in parentheses indicate diastereomeric ratio. ^b Alkene (3 equiv) and CH₃CN (1 mL) were used.

Scheme 3. Rh-Catalyzed Oxidative Cyclization^a

 a Numbers in parentheses indicate diastereomeric ratio. b Recovery yield of starting material.

commonly used in organic synthesis were tolerated. When electron-withdrawing 4-fluoro and 4-acetyl substituted phosphonic acids were used, the corresponding cyclized products **5d** and **5e** were obtained in good yields. The tolerance of the fluoro and ketone group on the phenyl ring is especially useful, providing an opportunity for further functionalization. A substrate bearing a 4-bromo group was smoothly cyclized to provide **5f** in 59% yield. However, when substrates having a 3-bromo and 3-methyl group were subjected to the Rh-catalyst, *ortho*-alkenylation

3988 Org. Lett., Vol. 15, No. 15, 2013

only occurred and then, 2-alkenylated products **4b** and **4c** were obtained in 50% and 68% yields, respectively. It seems that a subtle balance between the steric and electronic properties of the substituent on the phenyl ring is needed for the tandem reaction.

Scheme 4. Rh-Catalyzed Cyclization^a

^a Numbers in parentheses indicate diastereomeric ratio.

To obtain insight into the reaction mechanism, a catalytic C-H bond transformation in the presence of D_2O was carried out, thus providing a significant D/H exchange in the *ortho*-position of the recovered starting material $1a-[D_1]$ (eq 1). We also performed kinetic

isotope effect (KIE) studies (eq 2). A remarkable kinetic isotope effect (KIE) was observed $(k_{\rm H}/k_{\rm D}=2.6)$, ¹⁷ indicating that the C-H bond cleavage at the *ortho*position of phosphonic acid monoethyl ester is most likely involved in the rate-determining step.

(17) (a) Jones, W. D. Acc. Chem. Res. **2003**, *36*, 140. (b) Kakiuchi, F.; Matsuura, Y.; Kan, S.; Chatani, N. J. Am. Chem. Soc. **2005**, *127*, 5936.

As shown in Scheme 5, a plausible reaction mechanism for the reaction of arylphosphonic acid monoethyl esters 1 with alkenes 2 is described. A proposed catalytic cycle was initiated by coordination of 1 to Cp*RhX₂(III) to provide a rhodium(III) phosphonate I. Sequential *ortho*-rhodation to provide a rhodacycle intermediate II, alkene insertion, and β -hydride elimination took place to give *ortho*-alkenylated arylphosphonic acid monoethyl esters 4, and then, an *oxy*-Michael reaction gave rise to benzoxaphosphole 1-oxides 3.

Scheme 5. A Plausible Mechanism

In summary, we have developed an efficient rhodium-catalyzed tandem oxidative alkenylation and intramolecular *oxy*-Michael reaction from arylphosphonic acid monoethyl esters and alkenes under aerobic conditions, which produced benzoxaphosphole 1-oxides in good to excellent yields. Moreover, arylphosphonic acid monoethyl esters having a substituent at the *para*-position underwent tandem dialkenylation and an *oxy*-Michael reaction to afford 7-alkenylated benzoxaphosphole 1-oxides. Current efforts are directed toward the development of an efficient reaction using a phosphoryl functional group and its application.

Acknowledgment. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2011-0018355) and BRL (2009-0087013). P.H. thanks Prof. E. J. Yoo (KNU) for helpful discussions and manuscript preparation. This paper is dedicated to Professor Chul-Ho Jun, Yonsei University, on the occasion of his 60th birthday.

Supporting Information Available. Experimental procedures, characterization data, and ¹H and ¹³C NMR spectra for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.

Org. Lett., Vol. 15, No. 15, 2013